Humidity determines snowpack ablation under a warming climate

نویسندگان

  • Adrian A Harpold
  • Paul D Brooks
چکیده

Climate change is altering historical patterns of snow accumulation and melt, threatening societal frameworks for water supply. However, decreases in spring snow water equivalent (SWE) and changes in snowmelt are not ubiquitous despite widespread warming in the western United States, highlighting the importance of latent and radiant energy fluxes in snow ablation. Here we demonstrate how atmospheric humidity and solar radiation interact with warming temperature to control snowpack ablation at 462 sites spanning a gradient in mean winter temperature from -8.9 to +2.9 °C. The most widespread response to warming was an increase in episodic, midwinter ablation events. Under humid conditions these ablation events were dominated by melt, averaging 21% (202 mm/year) of SWE. Winter ablation under dry atmospheric conditions at similar temperatures was smaller, averaging 12% (58 mm/year) of SWE and likely dominated by sublimation fluxes. These contrasting patterns result from the critical role that atmospheric humidity plays in local energy balance, with latent and longwave radiant fluxes cooling the snowpack under dry conditions and warming it under humid conditions. Similarly, spring melt rates were faster under humid conditions, yet the second most common trend was a reduction in spring melt rates associated with earlier initiation when solar radiation inputs are smaller. Our analyses demonstrate that regional differences in atmospheric humidity are a major cause of the spatial variability in snowpack response to warming. Better constraints on humidity will be critical to predicting both the amount and timing of surface water supplies under climate change.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Sensitivity of Mountain Snowpack Accumulation to Climate Warming

Controls on the sensitivity of mountain snowpack accumulation to climate warming (lS) are investigated. This is accomplished using two idealized, physically based models of mountain snowfall to simulate snowpack accumulation for the Cascade Mountains under current and warmed climates. Both models are forced from sounding observations. The first model uses the linear theory (LT) model of orograp...

متن کامل

Estimated impacts of climate warming on California’s high-elevation hydropower

California’s hydropower system is composed of high and low elevation power plants. There are more than 150 high-elevation power plants, at elevations above 1,000 feet (300 m). Most have modest reservoir storage capacities, but supply roughly 74% of California’s in-state hydropower. The expected shift of runoff peak from spring to winter due to climate warming, resulting in snowpack reduction an...

متن کامل

The effect of slope aspect on the response of snowpack to climate warming in the Pyrenees

The aim of this study was to analyse the effect of slope aspect on the response of snowpack to climate warming in the Pyrenees. For this purpose, data available from five automatic weather stations were used to simulate the energy and mass balance of snowpack, assuming different magnitudes of an idealized climate warming (upward shifting of 1, 2 and 3 °C the temperature series). Snow energy and...

متن کامل

Statistical adaptation of ALADIN RCM outputs over the French Alps – application to future climate and snow cover

In this study, snowpack scenarios are modelled across the French Alps using dynamically downscaled variables from the ALADIN Regional Climate Model (RCM) for the control period (1961–1990) and three emission scenarios (SRES B1, A1B and A2) for the midand late 21st century (2021–2050 and 2071–2100). These variables are statistically adapted to the different elevations, aspects and slopes of the ...

متن کامل

Link between land-ocean warming contrast and surface relative humidities in simulations with coupled climate models

[1] Simulations of warming climates with coupled climate models exhibit strong land-ocean contrasts in changes in surface temperature and relative humidity, but little land-ocean contrast in changes in equivalent potential temperature. A theory that assumes equal changes in equivalent potential temperature over land and ocean captures the simulated land-ocean warming contrast in the tropics if ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 115  شماره 

صفحات  -

تاریخ انتشار 2018